COURSE OUTLINE Winter 2024

General Chemistry

General Chemistry (SGC100) is a three-credit, 14-week introductory course designed to introduce students to the fundamental concepts of chemistry. The course will emphasize the physical and chemical principles of chemistry relating to matter and its transformations including measurement, atoms and molecules, nuclear chemistry, ions, the mole, reaction stoichiometry, gases, solutions, and acids and bases.

The application of chemical fundamentals to naturopathic medicine is integrated throughout the course, providing students with a unique opportunity to learn chemistry within the context of naturopathic medicine. Incorporation of a virtual laboratory component enhances and reinforces material covered in the course and allows the student to experience a practical application of chemistry while maintaining the convenience of an online chemistry course.

There are no prerequisite requirements for General Chemistry.

On completion of the course the student will be expect to:

• Demonstrate a vr

1	Wednesday, January 10, 2024	Module 1	Introduction to course 1) Matter & Measurements
2	Wednesday, January 17, 2024	Module 2	2) Atoms & the Periodic Table
3	Wednesday, January 24, 2024	Module 3	3) Ionic Compounds
4	Wednesday, January 31, 2024	Module 4	4) Molecular Compounds
5	Wednesday, February 7, 2024	Module 5	5) Classification and Balancing Reactions
6	Wednesday, February 14, 2024	Study Week	Review
7	Wednesday, February 21, 2024		(Midterm covers Modules 1-5) 6) Chemical Reactions: Mole & Mass Relationships
8	Wednesday, February 28, 2024	Module 7	7) Chemical Reactions: Energy, Rates and Equilibrium
9	Wednesday, March 6, 2024	Module 8	8) Gases, Liquids and Solids
10	Wednesday, March 13, 2024	Module 9	9) Solutions
11	Wednesday, March 20, 2024	Module 10	10) Acids & Bases
12	Wednesday, March 27, 2024	Module 11	11) Nuclear Chemistry
13	Wednesday, April 3, 2024	Study Week	Review
14	Wednesday, April 10, 2024		(Final Exam is

By the end of this session, the student will be able to:

- Navigate Moodle SGC100 course shell and ZOOM programs
- Understand course requirements, including textbook readings, evaluations and deadlines
- Begin Module 1

8 YUX]bY. DcghU Vf]YZ]bhfcXi Wh]cb cb I D YUse introduce yours Y 2 Zcfi a before the start of the tutorial.

Module 1: Matter & Measurements

Deadline: Complete Module 1 before the start of the tutorial.

Module 2: Atoms and the Periodic Table

Deadline: Complete Module 2 before the start of the tutorial.

Module 3: Ionic Compounds

Deadline: Complete Module 3 before the start of the tutorial.

Module 4: Molecular Compounds

Deadline: Complete Module 4 before the start of the tutorial.

Module 5: Classification & Balancing of Chemical Reactions

Deadline: Complete Module 5 before the start of the tutorial.

Module 6: Chemical Reactions: Mole and Mass Relationships

Deadline: Complete Module 6 before the start of the tutorial.

Module 7: Chemical Reactions: E4- q0.00000912 0 612 792 reW*nBT/F4 10.2 Tf1 0 0.3333 1 72.075 646.7 99455t